Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 917: 170355, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38281649

ABSTRACT

Numerous SARS-CoV-2 variants are emerging as the epidemic continues, inducing new waves of contamination. In July 2023, a new variant named BA.2.86 was identified, raising concerns about its potential for viral escape, even in an immune population. The reduction in patient-centered testing and the identification of variants by sequencing means that we are now blind to the spread of this new variant. The aim of this study was to track the signature of this variant in wastewater in Paris, France. This variant showed a very rapid spread, highly correlated with national flash studies involving sequencing of clinical samples, but with a moderate impact on virus circulation. This easy-to-implement approach enabled us to monitor the emergence and spread of this new variant in real time at low cost.


Subject(s)
Epidemics , Wastewater , Humans , Paris , France , Drug Contamination
2.
Food Environ Virol ; 16(1): 97-108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38085424

ABSTRACT

Human enteric viruses are important etiological agents of waterborne diseases. Environmental waters are usually contaminated with low virus concentration requiring large concentration factors for effective detection by (RT)-qPCR. Low-pressure reverse osmosis is often used to remove water contaminants, but very few studies focused on the effective virus removal of reverse osmosis treatment with feed concentrations as close as possible to environmental concentrations and principally relied on theoretical virus removal. The very low viral concentrations usually reported in the permeates (i.e. at least 5 log of removal rate) mean that very large volumes of water need to be analysed to have sufficient sensitivity and assess the process efficiency. This study evaluates two methods for the concentration of adenoviruses, enteroviruses and MS2 bacteriophages at different viral concentrations in large (< 200 L) and very large (> 200 L) volumes. The first method is composed of two ultrafiltration membranes with low-molecular weight cut-offs while the second method primarily relies on adsorption and elution phases using electropositive-charged filters. The recovery rates were assessed for both methods. For the ultrafiltration-based protocol, recovery rates were similar for each virus studied: 80% on average at high virus concentrations (106-107 viruses L-1) and 50% at low virus concentrations (103-104 viruses L-1). For the electropositive-charged filter-based method, the average recoveries obtained were about 36% for ADV 41, 57% for CV-B5 and 1.6% for MS2. The ultrafiltration-based method was then used to evaluate the performance of a low-pressure reverse osmosis lab-scale pilot plant. The retentions by reverse osmosis were similar for all studied viruses and the validated recovery rates applied to the system confirmed the reliability of the concentration method. This method was effective in concentrating all three viruses over a wide range of viral concentrations. Moreover, the second concentration method using electropositive-charged filters was studied, allowing the filtration of larger volumes of permeate from a semi-industrial low-pressure reverse osmosis pilot plant. This reference method was used because of the inability of the UF method to filter volumes on the order of one cubic metre.


Subject(s)
Enterovirus , Viruses , Water Purification , Humans , Reproducibility of Results , Filtration/methods , Ultrafiltration/methods , Water Purification/methods , Water , Osmosis
3.
Viruses ; 14(8)2022 08 15.
Article in English | MEDLINE | ID: mdl-36016399

ABSTRACT

OBJECTIVE: There is extensive evidence that SARS-CoV-2 replicates in the gastrointestinal tract. However, the infectivity of virions in feces is poorly documented. Although the primary mode of transmission is airborne, the risk of transmission from contaminated feces remains to be assessed. DESIGN: The persistence of SARS-CoV-2 (infectivity and RNA) in human and animal feces was evaluated by virus isolation on cell culture and RT-qPCR, respectively. The exposure of golden Syrian hamsters to experimentally contaminated feces through intranasal inoculation has also been tested to assess the fecal-oral transmission route. RESULTS: For periods that are compatible with average intestinal transit, the SARS-CoV-2 genome was noticeably stable in human and animal feces, contrary to the virus infectivity that was reduced in a time- and temperature-dependent manner. In human stools, this reduction was variable depending on the donors. Viral RNA was excreted in the feces of infected hamsters, but exposure of naïve hamsters to feces of infected animals did not lead to any productive infection. Conversely, hamsters could be experimentally infected following exposure to spiked fresh feces. CONCLUSION: Infection following exposure to naturally contaminated feces has been suspected but has not been established so far. The present work demonstrates that SARS-CoV-2 rapidly lost infectivity in spiked or naturally infected feces. Although the possibility of persistent viral particles in human or animal feces cannot be fully ruled out, SARS-CoV-2 transmission after exposure to contaminated feces is unlikely.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Feces , Humans , Mesocricetus , RNA, Viral
4.
Sci Total Environ ; 848: 157740, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35917966

ABSTRACT

Throughout the COVID-19 pandemic, new variants have continuously emerged and spread in populations. Among these, variants of concern (VOC) have been the main culprits of successive epidemic waves, due to their transmissibility, pathogenicity or ability to escape the immune response. Quantification of the SARS-CoV-2 genomes in raw wastewater is a reliable approach well-described and widely deployed worldwide to monitor the spread of SARS-CoV-2 in human populations connected to sewage systems. Discrimination of VOCs in wastewater is also a major issue and can be achieved by genome sequencing or by detection of specific mutations suggesting the presence of VOCs. This study aimed to date the emergence of these VOCs (from Alpha to Omicron BA.2) by monitoring wastewater from the greater Paris area, France, but also to model the propagation dynamics of these VOCs and to characterize the replacement kinetics of the prevalent populations. These dynamics were compared to various individual-centered public health data, such as regional incidence and the proportions of VOCs identified by sequencing of strains isolated from patient. The viral dynamics in wastewater highlighted the impact of the vaccination strategy on the viral circulation within human populations but also suggested its potential effect on the selection of variants most likely to be propagated in immunized populations. Normalization of concentrations to capture population movements appeared statistically more reliable using variations in local drinking water consumption rather than using PMMoV concentrations because PMMoV fecal shedding was subject to variability and was not sufficiently relevant in this study. The dynamics of viral spread was observed earlier (about 13 days on the wave related to Omicron VOC) in raw wastewater than the regional incidence alerting to a possible risk of decorrelation between incidence and actual virus circulation probably resulting from a lower severity of infection in vaccinated populations.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Pandemics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sewage , Wastewater
5.
Front Microbiol ; 13: 889811, 2022.
Article in English | MEDLINE | ID: mdl-35756003

ABSTRACT

Since the beginning of the Coronavirus Disease-19 (COVID-19) pandemic, multiple Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mutations have been reported and led to the emergence of variants of concern (VOC) with increased transmissibility, virulence or immune escape. In parallel, the observation of viral fecal shedding led to the quantification of SARS-CoV-2 genomes in wastewater, providing information about the dynamics of SARS-CoV-2 infections within a population including symptomatic and asymptomatic individuals. Here, we aimed to adapt a sequencing technique initially designed for clinical samples to apply it to the challenging and mixed wastewater matrix, and hence identify the circulation of VOC at the community level. Composite raw sewage sampled over 24 h in two wastewater-treatment plants (WWTPs) from a city in western France were collected weekly and SARS-CoV-2 quantified by RT-PCR. Samples collected between October 2020 and May 2021 were submitted to whole-genome sequencing (WGS) using the primers and protocol published by the ARTIC Network and a MinION Mk1C sequencer (Oxford Nanopore Technologies, Oxford, United Kingdom). The protocol was adapted to allow near-full genome coverage from sewage samples, starting from ∼5% to reach ∼90% at depth 30. This enabled us to detect multiple single-nucleotide variant (SNV) and assess the circulation of the SARS-CoV-2 VOC Alpha, Beta, Gamma, and Delta. Retrospective analysis of sewage samples shed light on the emergence of the Alpha VOC with detection of first co-occurring signature mutations in mid-November 2020 to reach predominance of this variant in early February 2021. In parallel, a mutation-specific qRT-PCR assay confirmed the spread of the Alpha VOC but detected it later than WGS. Altogether, these data show that SARS-CoV-2 sequencing in sewage can be used for early detection of an emerging VOC in a population and confirm its ability to track shifts in variant predominance.

6.
Sci Total Environ ; 833: 155121, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35398418

ABSTRACT

Leptospirosis is a neglected zoonotic disease with a worldwide distribution caused by bacterial pathogenic Leptospira. Rodents are considered as the main reservoir of Leptospira and transmission usually occurs through exposure to urine-contaminated environment. However, interactions between environment, rodent reservoir and human leptospirosis remain poorly studied. Here, we evaluated the concentration of Leptospira in surface water and captured rats in the city of Paris (France) from 2018 to 2020 using an integrity qPCR (Quantitative Polymerase Chain Reaction). All environmental samples (n = 1031) were positive for saprophytic Leptospira but pathogenic Leptospira P1 group were only found in 40% (n = 363; 2018) to 0% (n = 264; 2020) of samples. In the same time, analysis of 200 brown rat corpses trapped in the city, showed about 15% of positivity for Leptospira but the different method used for rats conservation (based on presence or absence of conservative agent) showed important variations in the Leptospira prevalence. Metagenomic analysis, based on rrs gene sequencing, was also carried out to evaluate the distribution of Leptospira in samples. Results could indicate that some species of Leptospira are found in surface waters as well as rats, but further study is needed to accurately describe the nature of the link between these two reservoirs. Quantification of Leptospira and pathogenic species description circulating inside animal reservoir living in the vicinity of freshwater in urban areas, will be helpful to understand the eco-epidemiology of leptospirosis and to establish prevention and intervention strategies, especially in the context of organization of recreative activity events in these urban areas.


Subject(s)
Leptospira , Leptospirosis , Animals , Fresh Water , Leptospira/genetics , Leptospirosis/epidemiology , Leptospirosis/veterinary , Rats , Real-Time Polymerase Chain Reaction , Rodentia
7.
Environ Int ; 158: 106998, 2022 01.
Article in English | MEDLINE | ID: mdl-34991258

ABSTRACT

Since many infected people experience no or few symptoms, the SARS-CoV-2 epidemic is frequently monitored through massive virus testing of the population, an approach that may be biased and may be difficult to sustain in low-income countries. Since SARS-CoV-2 RNA can be detected in stool samples, quantifying SARS-CoV-2 genome by RT-qPCR in wastewater treatment plants (WWTPs) has been carried out as a complementary tool to monitor virus circulation among human populations. However, measuring SARS-CoV-2 viral load in WWTPs can be affected by many experimental and environmental factors. To circumvent these limits, we propose here a novel indicator, the wastewater indicator (WWI), that partly reduces and corrects the noise associated with the SARS-CoV-2 genome quantification in wastewater (average noise reduction of 19%). All data processing results in an average correlation gain of 18% with the incidence rate. The WWI can take into account the censorship linked to the limit of quantification (LOQ), allows the automatic detection of outliers to be integrated into the smoothing algorithm, estimates the average measurement error committed on the samples and proposes a solution for inter-laboratory normalization in the absence of inter-laboratory assays (ILA). This method has been successfully applied in the context of Obépine, a French national network that has been quantifying SARS-CoV-2 genome in a representative sample of French WWTPs since March 5th 2020. By August 26th, 2021, 168 WWTPs were monitored in the French metropolitan and overseas territories of France. We detail the process of elaboration of this indicator, show that it is strongly correlated to the incidence rate and that the optimal time lag between these two signals is only a few days, making our indicator an efficient complement to the incidence rate. This alternative approach may be especially important to evaluate SARS-CoV-2 dynamics in human populations when the testing rate is low.


Subject(s)
COVID-19 , Epidemics , Humans , RNA, Viral , SARS-CoV-2 , Wastewater
8.
J Environ Manage ; 301: 113866, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34624574

ABSTRACT

The uses of bivalve molluscs in environmental biomonitoring have recently gained momentum due to their ability to indicate and concentrate human pathogenic microorganisms. In the context of the health crisis caused by the COVID-19 epidemic, the objective of this study was to determine if the SARS-CoV-2 ribonucleic acid genome can be detected in zebra mussels (Dreissena polymorpha) exposed to raw and treated urban wastewaters from two separate plants to support its interest as bioindicator of the SARS-CoV-2 genome contamination in water. The zebra mussels were exposed to treated wastewater through caging at the outlet of two plants located in France, as well as to raw wastewater in controlled conditions. Within their digestive tissues, our results showed that SARS-CoV-2 genome was detected in zebra mussels, whether in raw and treated wastewaters. Moreover, the detection of the SARS-CoV-2 genome in such bivalve molluscans appeared even with low concentrations in raw wastewaters. This is the first detection of the SARS-CoV-2 genome in the tissues of a sentinel species exposed to raw and treated urban wastewaters. Despite the need for development for quantitative approaches, these results support the importance of such invertebrate organisms, especially zebra mussel, for the active surveillance of pathogenic microorganisms and their indicators in environmental waters.


Subject(s)
Bivalvia , COVID-19 , Dreissena , Animals , Dreissena/genetics , Humans , SARS-CoV-2 , Wastewater
9.
PLoS One ; 16(5): e0251901, 2021.
Article in English | MEDLINE | ID: mdl-34038443

ABSTRACT

Leptospirosis is an emerging worldwide zoonotic disease, but the general biology of the causative agents is still poorly understood. Humans are an occasional host. The main risk factors are water-associated exposure during professional or recreational activities or during outbreaks in endemic areas. Detecting the presence of pathogenic bacteria in aquatic environments and their capacity to resist various inactivation processes are research fields that need to be further developed. In addition, the methods used for detecting and enumerating Leptospira still need to be improved. We aimed to describe a new quantitative polymerase chain reaction coupled to propidium monoazide treatment (PMAqPCR) that targets not only total Leptospira but also discriminates pathogenic from non-pathogenic Leptospira while also addressing PCR inhibitors, a frequently encountered problem when studying environmental water. In a second step, the killing efficiency of Leptospira to different treatments was tested and PMAqPCR compared to culture-based enumeration. This provided information about the effects of temperature, as well as ultraviolet and chlorine disinfection, that are both related to water treatment processes, in particular for the production of drinking water, on the persistence of both saprophytic and pathogenic Leptospira. Finally, PMAqPCR was used for the detection of Leptospira in freshwater samples for a proof-of-concept. In conclusion, our method could be used for routine freshwater monitoring and allows better evaluation of the presence of Leptospira, allowing evaluation of the bacterial dynamics in a designated area or assessment of the efficacy of water disinfection processes.


Subject(s)
DNA, Bacterial/isolation & purification , Disinfection , Leptospira/isolation & purification , Leptospirosis/microbiology , Animals , Environmental Monitoring , Fresh Water/microbiology , Humans , Leptospira/pathogenicity , Leptospirosis/diagnosis , Leptospirosis/genetics , Real-Time Polymerase Chain Reaction , Water , Water Microbiology , Zoonoses/microbiology
13.
Environ Int ; 123: 114-123, 2019 02.
Article in English | MEDLINE | ID: mdl-30508731

ABSTRACT

Contamination of fresh water bodies by human enteric viruses from wastewater discharge is a well-established phenomenon. Here we propose a model of viral contamination of rivers based on acute gastroenteritis epidemiology and assess how well it can simulate in situ experimental monitoring. Noroviruses, rotaviruses, enteroviruses, adenoviruses and hepatitis A viruses were quantified by molecular methods after water concentration. Water flows were obtained from the Hydro databank and wastewater treatment plant (WWTP) data. Acute gastroenteritis cases based on medical prescriptions were recorded by the French public health agency. We estimated the total number of daily viral acute gastroenteritis cases and modeled virus shedding and fate in WWTPs and rivers. Simulated virus concentrations were compared to the weighted sum of measured concentrations. Seasonal variations in viral acute gastroenteritis were predicted from vomiting occurrence. All viruses except hepatitis A virus were widely detected in wastewaters and river, in concentrations reaching 10+6 genome copies·L-1 for adenoviruses in the Artière River. We were able to predict virus load in raw wastewater and in the Artière River. Estimated weighting coefficients showed the high impact of noroviruses GII. This model can thus serve to compare water treatment, discharge and reuse scenarios.


Subject(s)
Fresh Water/virology , Gastroenteritis/epidemiology , Rivers/virology , Viruses/isolation & purification , Vomiting/virology , Adolescent , Adult , Aged , Child , Child, Preschool , Environmental Monitoring/methods , France/epidemiology , Gastroenteritis/virology , Humans , Incidence , Infant , Middle Aged , Models, Biological , Seasons , Virus Shedding , Viruses/classification , Wastewater/virology , Water Purification , Young Adult
14.
Environ Sci Technol ; 51(23): 13633-13640, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29116763

ABSTRACT

Although the interaction between phages and bacteria has already been well described, it only recently emerged that human viruses also interact with bacteria in the mammalian gut. We studied whether this interaction could occur in tap water and thus confer enteric viruses protection against temperature and the classical disinfection treatments used in drinking water production. We demonstrated that the addition of lipopolysaccharide or peptidoglycan of bacterial origin to enterovirus provides thermal protection through stabilization of the viral capsid. This interaction plays a role when viruses are exposed to disinfection that targets the capsid, but less so when the virus genome is directly targeted. The interaction seems to be serotype-specific, suggesting that the capsid protein sequence could be important. The protection is linked to a direct association between viral particles and bacterial compounds as observed by microscopy. These results show that bacterial compounds present in the environment can affect virus inactivation.


Subject(s)
Disinfection , Drinking Water , Viruses , Animals , Enterovirus , Humans , Virus Inactivation , Water Microbiology
15.
J Virol Methods ; 209: 47-54, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25196451

ABSTRACT

Despite the progress in water and wastewater treatment technologies, waterborne diseases are still a major concern of public health. In the reported water-related outbreaks, viruses constitute one of the main causal agents. Enteroviruses are one of the most viruses monitored in water and are often used as an indicator of viral pollution. Isolation and identification of this virus are now regularly based on molecular tools. However published or commercial protocols for detection of these viruses in water are frequently lacking of validation processes and performance evaluation in such complex samples. A method for enterovirus detection in environmental water has been developed, its performance has been evaluated and compared with several commercial kits. The sensitivity of commercial methods in clinical samples, ranged between 89% and 100%, while the sensitivity in seeded environmental matrices fell between 16% and 91%. This method showed the best performance in environmental samples and was subsequently applied on surface and treated wastewater. The results showed the large dissemination of enteroviruses in an urbanized river. The results also emphasized the importance of good knowledge of the method's limits for its utilization in environmental samples in order to minimize false negatives and to avoid underestimating viral concentration.


Subject(s)
Enterovirus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Water Microbiology , Enterovirus/genetics , Sensitivity and Specificity
16.
PLoS One ; 4(12): e8495, 2009 Dec 30.
Article in English | MEDLINE | ID: mdl-20041119

ABSTRACT

BACKGROUND: The major role of the neuraminidase (NA) protein of influenza A virus is related to its sialidase activity, which disrupts the interaction between the envelope hemagglutinin (HA) protein and the sialic acid receptors expressed at the surface of infected cells. This enzymatic activity is known to promote the release and spread of progeny viral particles following their production by infected cells, but a potential role of NA in earlier steps of the viral life cycle has never been clearly demonstrated. In this study we have examined the impact of NA expression on influenza HA-mediated viral membrane fusion and virion infectivity. METHODOLOGY/PRINCIPAL FINDINGS: The role of NA in the early stages of influenza virus replication was examined using a cell-cell fusion assay that mimics HA-mediated membrane fusion, and a virion infectivity assay using HIV-based pseudoparticles expressing influenza HA and/or NA proteins. In the cell-cell fusion assay, which bypasses the endocytocytosis step that is characteristic of influenza virus entry, we found that in proper HA maturation conditions, NA clearly enhanced fusion in a dose-dependent manner. Similarly, expression of NA at the surface of pseudoparticles significantly enhanced virion infectivity. Further experiments using exogenous soluble NA revealed that the most likely mechanism for enhancement of fusion and infectivity by NA was related to desialylation of virion-expressed HA. CONCLUSION/SIGNIFICANCE: The NA protein of influenza A virus is not only required for virion release and spread but also plays a critical role in virion infectivity and HA-mediated membrane fusion.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/enzymology , Neuraminidase/metabolism , Virus Internalization , Acids , Animals , Biological Assay , Cell Fusion , Cell Line , Dogs , HIV-1/pathogenicity , Humans , Hydrogen-Ion Concentration , Membrane Fusion , Reproducibility of Results , Solubility , Trypsin/metabolism
17.
J Virol ; 81(9): 4540-50, 2007 May.
Article in English | MEDLINE | ID: mdl-17287264

ABSTRACT

Antiretroviral treatment failure is associated with the emergence of resistant human immunodeficiency virus type 1 (HIV-1) populations which often express altered replicative capacity (RC). The resistance and RC of clinical HIV-1 strains, however, are generally assayed using activated peripheral blood mononuclear cells (PBMC) or tumor cell lines. Because of their high proliferation rate and concurrent high deoxynucleoside triphosphate (dNTP) content, both resistance and RC alterations might be misestimated in these cell systems. We have evaluated the resistance of HIV-1 clones expressing a variety of RT resistance mutations in primary human macrophages using a single cycle system. Our experiments indicate that d4T, ddI, and 3TC are more potent in macrophages than in HeLa-derived P4 tumor cells. Mutant viruses bearing thymidine analogue mutations (TAMs) or the K65R mutation had similar resistance levels in the two cell types. Strikingly, however, the M184V mutant, although fully resistant to 3TC in P4 cells, maintained some susceptibility to 3TC in macrophages from 8 of 11 donors. Using the same system, we found that the impact of resistance mutations on HIV RC was minimal in activated PBMC and in P4 cells. In contrast, mutant viruses exhibited strongly impaired RC relative to the wild type (WT) in macrophages, with the following RC order: WT > two TAMs > four TAMs = M184V > K65R. In undifferentiated monocytes, WT virus replication could be detected in three of six donors, but replication of all mutant viruses remained undetectable. Altogether, our results confirm that nucleoside reverse transcriptase inhibitors (NRTIs) are powerful antiviral agents in differentiated macrophages, reveal that HIV resistance to some NRTIs may be less efficient in these cells, and indicate that resistance-associated loss of RC is more pronounced in macrophages than in high-dNTP content cell systems.


Subject(s)
Anti-HIV Agents/pharmacology , Drug Resistance, Viral/genetics , HIV-1/genetics , Mutation/genetics , Reverse Transcriptase Inhibitors/pharmacology , Virus Replication/genetics , Analysis of Variance , Cell Line , DNA Primers , Humans , Inhibitory Concentration 50 , Macrophages , Nucleosides/genetics , Nucleosides/pharmacology , Plasmids/genetics , Virus Replication/drug effects
18.
J Virol ; 80(7): 3679-83, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16537639

ABSTRACT

Lentiviruses utilize two polypurine tracts for initiation of plus-strand viral DNA synthesis. We have examined to what extent human immunodeficiency virus type 1 plus-strand initiation at the central polypurine tract (cPPT) could protect the viral genome from DNA editing by APOBEC3G and APOBEC3B. The presence of a functional cPPT, but not of a mutated cPPT, extensively reduced editing by both APOBEC3G and APOBEC3B of sequences downstream, but not upstream, of the cPPT, with significant protection observed as far as 400 bp downstream. Thus, in addition to other potential functions, the cPPT could help protect lentiviruses from editing by cytidine deaminases of the APOBEC family.


Subject(s)
Cytidine Deaminase/metabolism , Genome, Viral , HIV-1/genetics , Nucleoside Deaminases/metabolism , RNA Editing , Repressor Proteins/metabolism , APOBEC-3G Deaminase , Base Sequence , Cytidine Deaminase/genetics , DNA Replication , DNA, Viral/biosynthesis , DNA, Viral/genetics , HIV-1/enzymology , Humans , Minor Histocompatibility Antigens , Mutagenesis, Site-Directed , Nucleoside Deaminases/genetics , Repressor Proteins/genetics
19.
J Virol ; 79(23): 14815-21, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16282481

ABSTRACT

Human immunodeficiency virus (HIV) reverse transcription can be notably affected by cellular activation, differentiation, and division. We hypothesized that changes in the cell cycle could also affect HIV susceptibility to nucleoside analogues, which compete with natural nucleotides for incorporation into viral DNA and inhibit viral replication through premature termination of reverse transcription. Proliferating HeLa-derived indicator cells were arrested in the S/G2 phase with etoposide, a topoisomerase II inhibitor, or in the G1/S phase with aphidicolin, a polymerase alpha inhibitor. Cell cycle arrest by both agents induced a remarkable decrease in HIV susceptibility to zidovudine (AZT). This decrease was seen both with a single-cycle infectivity assay and with a viral DNA quantitation assay, indicating that the effect of cell cycle arrest was exerted at the reverse transcription stage. The increase in the 50% inhibitory concentration (IC50) seen with arrested cells was strongest for AZT (23-fold) and stavudine (21-fold) but more modest for other drugs (lamivudine, 11-fold; dideoxyinosine, 7-fold; and nevirapine, 3-fold). In drug-resistant reverse transcriptase mutants, the increase in AZT IC50 (relative to that in dividing cells) was most prominent with a Q151M mutant and was comparable to the wild type in other drug-resistant mutants. Quantitation of intracellular pools of dTTP and AZT 5'-triphosphate (AZTTP) showed that etoposide treatment induced a significant increase in intracellular dTTP and consequently a decrease in AZTTP/dTTP ratios, suggesting that the decrease in viral susceptibility to AZT was caused by reduced incorporation of the analogue into nascent viral DNA. These results emphasize the importance of cellular proliferation and deoxynucleoside triphosphate metabolism in HIV susceptibility to nucleoside analogues and underscore the need to study the activities of drugs of this class with natural target cells under physiological conditions of activation and proliferation.


Subject(s)
Anti-HIV Agents/pharmacology , Cell Cycle/physiology , HIV-1/drug effects , Nucleosides/pharmacology , S Phase/physiology , Anti-HIV Agents/administration & dosage , DNA/genetics , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/enzymology , HeLa Cells , Humans , Lethal Dose 50 , Nucleosides/chemistry , Zidovudine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...